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Transverse Diffusion of a Collimated Particle Beam 
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We consider the problem of describing the steady-state spreading of a collimated 
particle beam as it penetrates a background material. The exact description for 
this problem is taken as the linear transport equation with full six-dimensional 
phase space dependence. In the limit of very forward peaked scattering with 
small energy transfer, the Fokker-Planck scattering description is used. To 
obtain a simplified model of beam transport, we assume that the beam in ques- 
tion has weak spatial gradients in the plane perpendicular to the beam direction, 
and that the beam nearly maintains its collimated integrity as it passes through 
the material. These assumptions lead to a hierarchy of advection-diffusion- 
like approximations for the spatial distribution of the particle density per unit 
energy. In the simple case of monoenergetic transport in a purely scattering 
homogeneous material, these equations are easily solved via Laplace and 
Fourier transformations to obtain explicit analytical results. Comparisons with 
benchmark Monte Carlo calculations give an indication of the accuracy of this 
treatment of beam spreading. 

KEY WORDS: Advection-diffusion; beam spreading; beam transport; drift- 
diffusion; kinetic theory; transport theory; transverse diffusion. 

1. I N T R O D U C T I O N  

We cons ider  the s teady-s ta te  l inear  t r anspor t  p r o b l e m  descr ibed  by the 

equa t i on  

~ .  V~(r ,  E,  ~ )  + a(r ,  E )  ~/(r, E, fg) 

f0 = dE '  d f Y  try(r, E '  ~ E,  ~ ' .  ~ )  ~,(r, E ' ,  ~ ' )  
rt 

- - o o < x , y < o o ,  O<~z<<.T (1) 
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with boundary conditions 

,~(1 - /~)  
~(x, y, 0, E,/.t, ~b) = F(x, y, E) 2----~' /.t > 0 (2) 

~b(x, y, T, E,/.t, ~b) = 0, p < 0 (3) 

qJ( +_ o% y, z, E, lz, q~)=~(x, ___ oo, z, E,/x, ~) = 0 (4) 

Here F(x, y, E) is the specified boundary data, assumed to vanish as x or 
y increases without bound. The spatial variable r has Cartesian coordinates 
x, y, z, and the unit vector ~,  which points in the particle streaming direc- 
tion, is described by a polar angle O=cos-~(,u) measured with respect to 
the z axis, and by an azimuthal angle ~ measured with respect to the x axis. 
The symbol E denotes the particle energy, and together x, y, z, E, p 
and ~ constitute the six coordinates of our phase space. The dependent 
variable ~(r, E, f l ) =  ~(x, y, z, E,p,  ~) is the particle intensity, defined as 
the product of the particle speed and the six-dimensional phase space 
particle density. The total cross section and scattering kernel are denoted 
in Eq. (1) by a(r, E) and as(r, E ' ~  E, KY. fl), respectively. As indicated by 
the angular arguments of these two quantities, we are assuming that the 
beam is transporting in an isotropic medium, where the probability of a 
particle collision is independent of the particle direction ~ ,  and the angular 
details of the scattering interaction depend only upon the scattering angle, 
cos = ~(~' �9 l-~). 

The physics described by Eqs. (I)-(4)  is that of steady-state transport 
of an extended (in x and y) particle beam incident upon one side (z = 0) 
of an infinite (in x and y) slab of thickness T. The spatial and energy 
dependences of this incident intensity are given by the function F(x, y, E). 
No particles impinge upon the slab surface at z = T, and no particles are 
introduced in the interior of the slab. In writing Eq. (I), we have included 
a spatial dependence for both a and a,  to indicate that our treatment will 
allow an arbitrary spatial heterogeneity for the material comprising the 
slab. The beam incident at z - -0  is assumed to be fully collimated, as 
indicated by the Dirac delta function with argument (1 - /2 )  in Eq. (2). 
Crucial to our analysis is the assumption that the x and y dependences of 
F(x, y, E) are weak, which implies weak spatial transverse (in x and y) 
gradients in the solution ~(r, E, ~).  Further, the slab is assumed thin, 
and/or the scattering is assumed to be very peaked in the forward direc- 
tion, so that the beam exiting the slab at z = T is only weakly perturbed 
from that entering at z = 0. In our analysis, we will explicitly neglect any 
backscattering of particles, and this also implies highly peaked forward 
scattering. 
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If one expands the scattering kernel in Legendre polynomials according 
to 

a~(r, E' --* E, KY. a )  = ~ (2n + l~ ' E) P . ( a '  �9 g~) (5) 
,=ok 4~ /cr~,(r,E---* 

and uses the well-known addition formula for P,(fY.fl) ,  Eq.(1) can 
equivalently be written as (1"2) 

l'~. V~,(r, E, l'~) + a(r, E) r E, f~) 

,=o 4n Jo dE'a,,(r, ---,E) dO' -1 d/z'~b(r,E',/~',~b') 

x [P,(/~)P,(/I')+2,,.,=k (n-m) ,  1 ( - -g -U- -  e ."(u) , t m)!  

O<~z<~T (6) 

where P~(#) is the associated Legendre function defined by 

P,T(/I) = (I _#2),,12 .d"P"(#) (7) 
d/: 

and the expansion coefficient as, in Eq. (5) is given by 

g, 1 

O ' s n ( r ,  E' ---, E) = 2n [ d~ P,(~) a,(r, E' --* E, 4) (8) 
J - 1  

The physical content of Eq. (6) is identical to that of Eq. (1), with Eq. (6) 
simply being in a more explicit algebraic form. 

If the scattering is sufficiently peaked in both angle (in the forward 
direction) and energy (about a zero energy exchange), the integral scattering 
operator in Eq. (6) can be asymptotically replaced by the Fokker-Planck 
differential operator. (3, 4) The resulting transport equation is given by ('' 2. 5) 

f~. Vq,(r, E, ~ )  + aa(r, E) ~,(r, E, ~ )  

al(r,2E)[ 0 a ( 1 "~ 0 2q 

+-~[S(r,E) d/(r,E,f~)], O<~z<~T (9) 

Here aa(r, E) is the absorption cross section given by 

I' Io %(r,E)=a(r ,E)-2n d~ dE' cG(r,E--*E',~) (10) 
- - I  

822/80/3-4-9 
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the cross section trl(r, E) is defined as 

a](r, E) = 2n f d~(1 - ~) dE'tr,(r,E~E',~) 
- - 1  

(11) 

and S(E), the so-called stopping power, is given by 

I oo 

S ( r , E ) = 2 n f _ l  d~ ~i dE'(E-E')a,(r ,E~E',r  (12) 

The sum of ira and a 1 is just the usual transport cross section O'tr. In the 
radiological physics community, 2al is denoted by T and called the (linear) 
scattering power. (6) The symbol T has also been used in the neutron trans- 
port theory literature, (2) but in this case T = a l / 2 .  The Fokker-Planck 
description, given by Eq. (9) and applicable to problems involving very 
forward peaked scattering with small energy transfer, (5) is obviously 
algebraically much simpler than the full transport description given by 
Eq. (6). Applications involving the problem just described, either with the 
full integral scattering operator or with the differential Fokker-Planck 
operator, include cosmic ray transport, material modification by ion beams, 
and electron beams used in radiation therapy for cancer. References to these 
applications can be found in a recent paper by B6rgers and Larsen. (7) 

Our goal in the present paper is to develop a hierarchy of approximate 
descriptions for p(r, E) which, aside from a factor of particle speed, is just 
the particle density per unit energy. This quantity is defined as the angular 
integral of ~(r, E, f l)  according to 

p(r, E) = ~4~ df l  •(r, E, f l)  = ~ d~b d/~ if(r, E,/z, ~b) (13) 

That is, we want to eliminate the phase space variables/~ and ~b from the 
problem and obtain an accurate and simpler description for the integral 
quantity p(r, E). It is only p(r, E) which is needed to compute spatial 
profiles of collision rates and energy deposition; the angular detail found in 
r E, f~) is not required for this purpose. 

The earliest work along these lines seems to be due to Fermi, (8' 9) who, 
in a seminar in 1940, obtained a very simple result in the case of purely 
scattering (aa =0)  monoenergetic transport in a homogeneous (tr s inde- 
pendent of space) medium. Such one-speed transport is characterized by 
the occurrence of a Dirac delta function, with argument ( E ' - E ) ,  in the 
scattering kernel as(E' ~E, ~' .~), Physically, this implies no particle 
energy change upon scattering, and thus particles at any given energy are 
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transported through the medium independently of those at other energies. 
Fermi's result is given by the equation 

Op alz  2 
Oz 2 V2p (14) 

where V 2 is the transverse Laplacian given by 

0 2 c~ 2 
(15/ 

The boundary conditions on Eq. (14) follow from Eqs. (2), (4), and (13) as 

p(x, y, 0)=F(x ,  y) (16) 

together with the vanishing of p(x, y, z) for large x and y. In writing Eqs. 
(14) and (16) we have dropped the energy argument E since it is simply a 
parameter in Fermi's result. We have also dropped the argument r to 
simplify the notation, a practice we will adopt henceforth. A written 
account of Fermi's solution can be found in Rossi and Greisen. (]~ This 
work was later generalized by Eyges (m to include small energy transfer in 
the scattering interaction. Very recently Larsen, (]z) using an algebraically 
intensive procedure, showed that the Fermi result can be derived as an 
asymptotic limit of the Fokker-Planck description for this problem [see 
Eq. (9)]. In this work, the stopping power S(E) was set to zero to recover 
the rnonoenergetic problem from Eq. (9). As a part of the asymptotic 
scalings, the Fokker-Planck scattering operator in Eq. (9) was written as 
the sum of two operators, and one of these was scaled as small compared 
to the other. This, coupled with other scalings, gave Eq. (14) as the lowest- 
order result in an asymptotic expansion. 

Proceeding to one higher order, Larsen found the result 

p(x, y, Z)=(1WfflZ ) p(X, y, Z) (17) 

where/~ satisfies the Fermi equation, i.e., 

~/9 (71 z2 
Oz=--T-v p (18) 

Larsen then carried his analysis to still one higher order, and obtained 

p(x, y, z) = [1 +alZ + 2(alZ) 2] ~(X, y,z)  (19) 
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where in this order ff satisfies the equation 

Op (a~z 2 5cr~z3'x 
g=(T+--3-) v2: (20) 

We note that aI1 of these results contain no explicit reference to the system 
thickness T. However, based upon the analysis, these results are meant to 
apply to a thin slab in the sense that a t T,~ 1, since in the derivations of 
these results backscattering was neglected. The linear in z term in Eq. (17) 
and the quadratic in z term in Eq. (19) are, in fact, simply small-z asymp- 
totic expansions of the transverse integrated (over x and y) solution. (7) 
For a particular case with a~ T =  0.1, Larsen showed by comparison with 
Monte Carlo benchmark results that the accuracy of his analysis improves 
as one retains more terms in the asymptotic expansion. Specifically, for the 
problem considered, he showed that Eqs. (19) and (20) are more accurate 
than Eqs. (17) and (18), which in turn are more accurate than the Fermi 
solution given by Eq. (14). Two other recent attempts at this problem had 
been reported cL3"~4) just prior to the Larsen treatment, but both are 
algebraically complex and appear to give results inferior to those of Larsen 
in general three-dimensional geometry. However, these two approaches 
give quite good results in one-dimensional geometry, c~5) 

In this paper, we show that a hierarchy of descriptions for the integral 
quantity p(r, E) can be obtained relatively simply from the underlying 
transport equation or its Fokker-Planck representation, without the 
necessity of introducing any scalings in the scattering operator as in the 
Larsen treatment. In lowest order, we obtain a result more accurate than 
that of Fermi. In next order, our analysis predicts results slightly more 
accurate than the highest-order results reported by Larsen, c~2) reproduced 
here as Eqs. (19) and (20). Further, our model development includes 
absorption and energy dependence in a straightforward way, and 
allows arbitrary spatial dependences for the interaction coefficients a 
and a s. Lastly, our procedure is quite straightforward and algebraically 
transparent. 

A summary of the remainder of this paper is as follows. In Section 2 
we apply our analysis to the Fokker-Planck description of the problem 
given by Eq. (9), and in Section 3 we give the corresponding analysis 
based upon the full transport description given by Eq. (6). In Section 4 we 
indicate that our equations for p(r, E) are easily solved, in the case of 
monoenergetic transport in a homogeneous medium, by a combination of 
Laplace and Fourier transform methods. This leads to explicit analytic 
solutions which we numerically compare in Section 5 with Monte Carlo 
benchmark results to assess the accuracy of our treatment. 
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2. T H E  F O K K E R - P L A N C K  A N A L Y S I S  

In this section we use the Fokker-Planck description given by Eq. (9) 
as the starting point of our analysis. This Fokker-Planck-based analysis is 
somewhat simpler than the corresponding analysis based upon the full 
transport description given by Eq. (6). The full transport equation analysis 
is given in the next section and, as we discuss there, the Fokker-Planck 
analysis gives valuable insight as to how to proceed in the corresponding 
treatment of Eq. (6). 

We begin the Fokker-Planck treatment by rewriting Eq. (9) in the 
somewhat more compact form 

O~ 0 ~I (I)aZd/] (21, UTiz+, o.vq,+ooq,= (s4,)+ Lq,+ ar 

where the operator L is defined by 

0 0~, (22) L@ =~-~ (I -/t2) ~-~ 

and the transverse component of 1-1. V~k is given by 

ar ar  
o9" Vr = (1 -/xz) la cos $ ~--~x + sin $ ~yy (23) 

with the V operator here and henceforth meaning the transverse (in x and 
y) gradient operator. We introduced a formal smallness parameter e in 
Eq. (21) to indicate the presumption that the transverse gradients are small. 
At the end of our considerations, e is to be set to unity. We assume analytic 
behavior of the solution qs in e according to 

~k= ~ e"~b (") (24) 

Use of Eq. (24) in Eq. (21) gives, upon equating coefficients of e", 

0 , , . ,  ,, 

u--~-z + 

n = 0 ,  1 .... (25) 
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with ~ ( - l )=0 .  The boundary conditions on Eq. (25) follow from Eqs. 
(2)-(4) as 

~,(~ = 0) = F 6( 1 - / , )  
2n ' /* > 0 (26) 

~,('~ = 0) = 0, # > 0 ,  n>~ 1 (27) 

~d")(z= T) = 0, / t<0 ,  n~>0 (28) 

~(")(x= ___ oo) = ~(")(y = _ oo) =0,  n>~0 (29) 

We consider this sequence of equations for 0 ~< n ~< 2. 
We define ~(/,) as the azimuthal integral of any quantity Q(/~, r i.e., 

= f~" d~b Q(/t, ~b) (30) 0(u) 

Integration of Eq. (25) with n = 0 ,  Eq. (26), and Eqs. (28) and (29) for 
n = 0 over azimuth gives the equation 

0~(o) 0 
(Sr176 + 2 Lff'~ (31) z -gZ-z + oo 

with boundary conditions 

~<~ = 0)=FO(1 --/z), /~>0 (32) 

~(~ = T) =0,  /1<0 (33) 

~(~ = + oo) = ~(~ ___oo) = 0  (34) 

By inspection of the equations defining ~,(o) it is clear that ~o) is inde- 
pendent of the azimuthal angle ~b, and hence 

~(o)= 2nq/(o) (35) 

Since q/(o) is independent of ~b, the azimuthal integral of Eq. (25) for n = 1 
gives 

O~ (1) 0 al L~(l) 
/~ ~ + a.~ (') = ~ (S~ '')) + --f (36) 

and Eqs. (27)-(29) show that all boundary conditions on ~(]) are 
homogeneous. Thus we immediately deduce by inspection that 

~')(r, E,/z) = 0 (37) 
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Equation (37) does not, of course, imply that ~k")= 0. In fact, ~k (~) 5 0  and 
it is this nonvanishing ~b (]) which gives rise to the transverse diffusion of the 
particle beam. This is seen by integrating Eq. (25) for n = 2 over azimuth. 
The result is 

aS '~' ~c~ ( s ~ )  + T /z--~-z + a  a = - d~og. (38) 

The boundary conditions on Eq. (38) follow from Eqs. (27)-(29), and are 
all homogeneous. Thus it is the nonvanishing of the integral term involving 
~k (I) in Eq. (38) which leads to a nonzero ~(2). 

If we now multiply Eq. (36) by e, Eq. (38) by e 2, and add the results 
to Eq. (31 ), we find 

(fl 0OZZ + O.a)(~(0)+$~(I)+/~2~(2)) 

= 0-2 [s(~(~ + ~<')  + ~:~<2>)] + T 

2 4  

--e2fs d~b o9 �9 V~h (') (39) 

The ~")  terms in Eq. (39) could, of course, be deleted by virtue of Eq. (37). 
Now, from Eq. (24) we have 

= ~(o)+ e~(,) + e2~(z) + O(e3) (40) 

and we can thus rewrite Eq. (39) as 

+ 2 L ~ k - - e 2 j 0  d~bog. V~h(')+O(e 3) (41) 

The boundary conditions on Eq. (41) are clearly given by 

6(z =0)  =FS(1  --/z), /z>O (42) 

6(z -- T) = 0, /z < 0 (43) 

~ ( x =  _+ ~ )  = ~b(y = _ + ~ ) = 0  (44) 

If we define Xx and Xe as 

Xx = ~k(l) cos ~, Zy = ~b(t) sin q~ (45) 
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we can rewrite Eq. (41) as 

^ O" l ^ ^ ^ O(k+aa~=-~-~(Sr162 +~)+O(e3) (46) 

In accordance with Eq. (30), ~ and ~y are given in terms of Xx and Xy as 
the corresponding azimuthal integrals, i.e., 

2~ 

f~=~i d~x~, r=x,y (47) 

To obtain an equation for ~x, we multiply the defining equation 
for r namely Eq. (25) for n = 1, by cos ~ an integrate over azimuth to 
get 

/t 
,~  "~ (l-~tZ)l/2a~(~ 

(48) 
1 - ~ )  2 Ox 

In deriving Eq. (48) we have integrated the O2~k(l)/O~b 2 term twice by parts. 
Since 

= ~(o) + O(e) (49) 

we can rewrite Eq. (48) as 

6~x ^ 0 0"1 ( )~x ) (1--//2)1/2 01~ . 
 Tz+ Oxx= (s/A+T L;?x Ux+O( ) (50) 

Since the ~x term in Eq. (46) is multiplied by an e 2, the O(e) error in the 
,~x equation given by Eq. (50) gives an error of O(e 3) in Eq. (46), and 
Eq. (46) already contains errors of this order. The boundary conditions on 
,fx at z = 0, z = T, x = ___ oo, and y = + oo are all homogeneous. In a similar 
way, we obtain an equation for ,~y by multiplying Eq. (25) for n = 1 by sin 
and integrating over 0 ~< ~ ~< 2n. The result is 

a O'1( ^ Xv ) (1--/A2)l/2a~ 
~.1 --[-~a2y~--~(S2y)--]- T L~y 1_---'#2 +O(e)  (51) 2 Oy 

It is convenient for our subsequent analysis to eliminate ~x and )~, in 
favor of f/x and #y, defined as 

#r=(1 --/U2)1/2 Xr , r=x, y (52) 



Transverse Diffusion of a Collimated Particle Beam 635 

Thus our pertinent results, given by Eqs. (46), (50), and (51), are written, 
setting e = 1 at this point and dropping the error order indicators, 

0~ + a a ~  = 0 a , L ^  - (53) 

It~z+aaOr==O=E(SOr)+-2[(l Z ((1 _/z2)'/2// 1-~J 

(1-~)o~ 
2 Or' r = x, y (54) 

with the operator L given by Eq. (22). The boundary conditions at z = 0 on 
Eqs. (53) and (54) are 

~(z=O)=F6(1 -/~),  p > 0  (55) 

0r(z = 0) =0,  /1 >0,  r=x,  y (56) 

We emphasize at this point that Eqs. (53)-(56) apply to a completely 
general medium, in that cr a, a l, and S are allowed to be arbitrary functions 
of x, y, and z. In the special case that these three quantities are independent 
of x and y (z dependences are allowed), the three coupled equations given 
by Eqs. (53) and (54) can be reduced to a set of only two coupled equa- 
tions. If we define 

O = ~ + 30y (57) 
Oy ox 

then clearly Eq. (53) is written 

^ 

0 ^ (58) 

An equation for 0 follows by differentiating Eq. (54) with respect to r and 
adding the two results corresponding to r = x and r = y. One finds 

o0 +aoO=~(so)+a, 0 0 l Z - ~ z  -~ I ( l - -pZ ) l /ZLGl_ -pz ) , / 2 ) - - l _ -~]  - -  
1 _ f 1 2  ~ ^ 

v-r 

(59) 

wi th  V 2 representing the transverse Laplacian given by Eq. (15). 
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We now return to the general heterogeneous-medium results given by 
Eqs. (53)-(56), and treat these by assuming that ~ and 0r are peaked about 
/1 = 1. We introduce the moments 

1 

~, , ,=f  d/.t(1-/O"~(,u), n=O, 1,... (60) 
- - 1  

r  1 

r/r,,= | d~(1-/ . t)"0r(/t) ,  n = 0 ,  1 .... (61) 
J - - 1  

The presumption is that 

~ ,+ ,  ,~ g,,, r/r.,, +, ,~ qr . (62) 

because of the peakedness assumption. From Eqs. (55) and (56), the 
boundary conditions at z = 0 on these moments are 

~,o(Z = 0) = F, ~,,(z = 0) = 0, n~>l (63) 

q, ,(z  = O) = O, n >1 0 (64) 

We develop differential equations for the ~b,, and q~, by taking ( 1 - # ) " ,  
m>_-0, moments of Eqs. (53) and (54), and using Eq. (62) to truncate the 
infinite set of moment equations. Specifically, we define the Nth-order 
approximation as carrying the first N +  1 moments of 0,(/z) and the first 
N + 2  moments of ~(/t). That is, we retain ~/,, for O<<.n<~N and ~k,, for 
0~<n~<N+l .  The reason for carrying one more qG moment than q,, 
moments is the factor of(1 - i t  2) multiplying O~/Or in Eq. (54). We specifi- 
cally are interested in ~o, which was previously denoted by p in the 
introduction to this paper. It is fro which is needed to compute absorption 
and energy deposition rates. 

We first consider the lowest-order approximation, namely N =  0. This 
corresponds to retaining the moments ~b o, ~1, and rbo. Formally dividing 
Eq. (53) by/z,  integrating the result over - I ~</.z ~< 1, and integrating the 
(L~)/ l l  term twice by parts gives 

. . . . . .  + (65) 

These formal operations are suspect at/~ = O, but presumably can be con- 
sidered rigorous in some distribution sense. However, such rigor is not 
required here. Our assumption of sharp peakedness of ~ and 0 about/~ = 1 
implies that these functions are negligibly small (essentially zero) suf- 
ficiently far from/~ = 1, and thus the behavior of 1//~ at/~ = 0 is irrelevant. 
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This peakedness assumption is implemented by expanding all algebraic 
functions of/1 about/z = 1. (These same comments apply throughout this 
paper whenever a division by/1 is performed.) As we just indicated, we now 
expand 1//z and 1//~ 3 about/z = 1, carrying first-order terms in (1 - # ) .  This 
gives 

) 0 + 30~) _ (0~_~2 0t/yo\ 0~ - ;+a , (0o+0~  =~-~[S(0o+~b,) ]  +Crl(OO +-~-y  ) (66) 

We obtain the equation for 00~/Oz in an analogous manner. We multiply 
Eq. (53) by (1-p)/kt ,  integrate over - 1  ~</~< 1, and algebraically mani- 
pulate to get 

I + a a 0 1  = ~-~ (SO,)  -'1- 0"1(0o -t- 31,//l ) (67) 

The equation for Orl~o/OZ follows from Eq. (54) by dividing by /.t and 
integrating over - 1 ~</~ ~< 1. After some algebraic manipulation, we find 

0r/to 0 001 
~Z + tYar/r0 = 0-E (Sr/~~ + crlqr~ Or' r=x ,y  (68) 

Equations (66)-(68) constitute our lowest-order (N = 0) approximation for 
a general heterogeneous medium. 

The next-order result ( N =  1) follows by retaining ~0, 0~, 02, qr0, and 
t/r I terms. Omitting the straightforward algebraic details, we find the seven 
equations 

+ aa(0o + 0, + 02) = ~ [S(0o + 01 + 02)] + a~(0o + 301 + 602) 

_ (O~xo O~lyO'X {O~Ixl Oqyl\ 
\ ox 

(69) 

001 1_ Ga(01 ..1_ 02 ) 0 0--~-- = ~ [S(0 ,  + 02)] + a,($o + 30, + 602) 

\ Ox + -~--y ) (70) 

00,_ 0 
O-T + a.Oa = ~-~ ($02) + 2a1(20~ + 302) (71) 
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OVl,o + aa(~l,o + Vl, l) 0 OZ : " ~  E S(~lrO J~ ~rl )] "[- O'1 (~rO 71- 3~rl) 

---I (2 ~ r l  + ~r2)  2 , r = x , y  (72) 

O/~r I a 0~2 
0--7 +trav' l  = ~  (S~/ '~)+al(21/ '~ at--' r = x ,  y 

(73) 

One could, of course, consider high-order approximations corre- 
sponding to N >~ 2. This is a straightforward algebraic procedure, following 
exactly along the lines we have just indicated for N = 0 and N = 1. In Nth 
order, one obtains 3N+ 4 coupled equations in the general case. We will 
not pursue these higher-order results in this paper. The final point we make 
in this section is that this set of 3 N + 4  equations can be reduced to a set 
of 2N+ 3 equations in the special case that go, a~, and S are independent 
of x and y. In accordance with the discussion following Eq. (56), the two 
equations for r/x,, and V/y n for a given index n can be combined, by differen- 
tiating and adding, into a single equation for v/n, defined as 

aVlx,, OVly,, 
q" = '-~-x + Oy (74) 

It is only the ~/n which occur in the ft, equations. Thus in this special case, 
the four N = 0  equations given by Eqs. (66)-(68) and the seven N =  1 
equations given by Eqs. (69)-(73) reduce to three and five equations, 
respectively. We will explicitly write these equations in Section 4 where we 
consider analytic and numerical results predicted by these models for a 
homogeneous medium. 

3. THE FULL TRANSPORT EQUATION ANALYSIS 

We now show that the same ideas we have applied to the Fokker- 
Planck equation in the last section can be applied to the full transport 
equation given by Eq. (6). The Fokker-Planck analysis just completed will 
be very useful as a guide to this more general analysis. We will point this 
out explicitly at the appropriate point in the development. Since the crux 
of our analysis is concerned with the treatment of the angular variables/z 
and ~, we restrict our considerations in this section to the purely scattering 
monoenergetic problem. This keeps the equations relatively uncluttered, 
and the addition of absorption and energy dependence is entirely straight- 
forward. The equation we start with is then, eliminating absorption and 
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energy dependence from Eq. (6), and decomposing the spatial gradient 
term as we did in Eq. (21), 

/2 aZ + ~O2- V~k(r, ~['l) + a,o(r) ~O(r, f~) = J$(r,  f l)  (75) 

Here J is the integral scattering operator defined by 

Jq~ = -Ts a/~' q,(~', ~') 
n = O  - - I  

x[P,( l t )P,(II ' ,+2 ~ (n-m)l'P,~(/a,P~(/t')cosm(q~-ck')] (76) 
.... l ( n + m ) !  

As in Section 2, the V operator in Eq. (75) is the transverse (in x and y) 
gradient operator, and e is a formal smallness parameter. In dealing with 
Eq. (75), we ignore the boundary conditions since their treatment is 
identical to that just given in connection with the Fokker-Planck equation. 

Assuming an expansion of ~k in e as before (see Eq. (24)], and 
following the same algebraic procedure, we arrive at the azimuthally 
integrated equations for ~, 0~, and Oy given by 

O(t(/~) + a~o(k(t~) ~ 2k + 1 ' 
l ,  -W-z  = -"~a~kPk(IX) f dlx' Pk(I z') 6(I.t') 

k=O --1 

2, dP~(IX) _ 2 +1 

II - +a~~ 2k(k+  1------~ 
k = l  

f l  dPk(I.t') . . . .  1 --IX2 0~ 
x -ldlz' ~ rlAlt ) -  2 Or' r = x , y  

(78) 

Equations (77) and (78) are the analogs of the Fokker-Planck results 
given by Eqs. (53) and (54) for S =  a ,  = 0  (monoenergetic transport with 
no absorption). In writing Eq. (78) we have made use of 

P~(/I) = ( 1 - /x  2) i/2 dPk(12 ) (79) 
+ 

Equation (78) can be put in a somewhat simpler form by using two iden- 
tities for Legendre polynomials, namely 

( 1 _/~2) dPk(p) = k[ek_ ~(/z) -/xP,(/z) ] (80) 
a / ~  
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and 

(2k+ 1)1*Pk(1*) = (k + 1) Pk + l(1*) + k P k -  l(1*) (81) 

Use of these two identities in Eq. (78) yields 

OOr(/'~) ..I- k(k  + I ) 
1. ~ -- asOOr(1*) = ~ O'$k[ ek--1(1.) - -  ek + 1 ( 1 . ) ]  

k=l 2(2k+ 1) 

f l  d1*, Pk_l(1*,)_  Pk + l(1*, ) 
x -1 1 _i , ,2  Or(l*') 

1 -1.20(0 
2 Or' r = x, y (82) 

It is also convenient in Eq. (77) to reconstruct (0(1.) from its Legendre 
moments according to 

k = O  --1 

Equation (83) allows us to rewrite Eq. (77) as 

0(0(1.) ~ 2 k 2 1  fl  1 ^ ^ 

(84) 

Equations (82) and (84) form the starting point for our subsequent 
analysis. 

We treat these two equations just as we did Eqs. (53) and (54) in the 
Fokker-Planck analysis. That is, we assume that (0(1.) and 0r(1*) are 
peaked about 1.= 1, introduce the (1 __1*)m moments as defined by Eqs. 
(60) and (61), and truncate the moment equations by neglecting r  for 
n ~>N+ 2 and r/r, for n>>.N+ 1 in the Nth-order approximation. We first 
consider the N =  0 approximation. We expand Pk(1*) about 1. = 1 according 
to 

k(k  + 1) 
Pk(1*) -- 1 2 (1 -1 . )  + ... (85) 

and then Eq. (84) becomes 

1. Oz = - - ~ ( a ~ k - - a , o )  Pk(1*) ~ko 
k=l 

k ( k +  l) h~] _ ('&lx 
2 \ O x  +~-~ )  

(86) 
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We divide Eq. (86) by/1 and integrate over - 1  ~<k~< 1, expanding 1//~ 
about/z = I and retaining quadratic terms, i.e., 

1 
- =  1 + ( 1 - # ) + ( 1 - / 1 ) 2 +  ... 
# 

2 
= ~ Po(/.t) - 3Pl(/t) + ~ P2(/t) + ... (87) 

where the Legendre polynomial terms are not to be interpreted as a trun- 
cated Legendre polynomial expansion of 1//t. Rather, they are simply a 
regrouping of the first three terms in the power series expansion of 1//~ 
about p = 1. At this point, one might enquire as to why three terms, not 
more and not less, were retained in this expansion of 1/#. We shall return 
to this question at the end of our N =  0 development. The result of the 
algebraic procedure outlined just above Eq. (87) is 

2 /00~o Oflyo'~ (88) 

We obtain the equation for 0~/i/07. in an analogous manner. We multiply 
Eq. (86) by ( 1 -#) / / l ,  expand this term on the right-hand side about/ t  = 1, 
carrying terms up to quadratic in ( 1 - p ) ,  and integrate over - 1  ~</t~< 1. 
The result is 

O~b] = 3(as~176  (as~176 (89) 

We obtain the equation for Orlro/OZ from Eq. (82). We first note that 
Eq. (85) gives 

Pk-  ~(I.z) -- Pk+ ~(/~) = (2k + 1 )( 1 --/1) + .. .  (90) 

and thus Eq. (82) becomes, since we are neglecting q~, for n >/1, 

# m  aO,(a) 
~z +crsoOr(#)= 4 ~ k (k+  l)%k[Pk_](/a)--Pk+](bt) 3 

k = l  

1 - # 2 a ~  
r=x ,  y (91) 

2 Or' 
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We divide Eq. (91 ) by/ t  and integrate over - 1 ~</1 ~< 1 to obtain, since we 
are neglecting q~,, for n >~ 2, 

fl Pk_l(fl)_pk+l(fl ) OtLo Go ~, k( k + 1 ) ask dlx 
Oz I-a~~176 4 k=l -I p 

0~t,i 
Or ' r = x, y (92) 

Finally, we expand [Pk--l(P)--Pk+l(P)]//~ about p =  1, again carrying 
terms quadratic in (1 - p ) .  The final result for Oqro/OZ is then 

0r/r0 0r 
C3---~-. = ( - -a .o+2a.1  --G2) qro-- 3--r-' r = x ,  y (93) 

Equations (88), (89), and (93) constitute our lowest-order ( N = 0 )  
approximation. 

Let us consider these equations in the limit of very peaked scattering 
in the forward direction. In this limit, the Fokker-Planck formalism should 
be valid, and Eqs. (88), (89), and (93) should reduce to the N = 0  results 
of the last section. In general, ask is defined by 

f 
l 

ask =2n  d~Pk(~) G(~) (94) 
- - I  

where as(() is the monoenergetic scattering kernel, assumed to be peaked 
about ~=  1. We approximate Pk(~) in Eq. (94) by its expansion about 
~=1  according to Eq.(85). This is the basis of the Fokker-Planck 
approximation.(]' 2, 5~ We then find 

k ( k +  1) 
ask = Go 2 al (95) 

with al defined by 

d~(1 - ~) G(~) (96) 
1 

A comparison of Eq. (96) with Eq. (11) shows that a~ is just the Fokker- 
Planck angular deflection parameter in the monoenergetic case, since in 
this case 

G(E'  ~ E, ~) = G(~) 6(E' - E) (97) 
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Making use of Eq. (95) to eliminate a,~ and as2 in Eqs. (88), (89), and (93) 
in favor of al gives 

63 z = O'l(~/o + 3~1 ) -- . ~ X -  +--@--y ) (98) 

az - crl(~k~ + 3~kl) (99) 

~]rO ~ 1  
0z =air / r~  ar ' r=x, y (100) 

These are, in fact, the N = 0  Fokker-Planck equations for the purely 
scattering, monoenergetic problem [ see Eqs. (66)-(68) with aa = S = 0]. 

Before leaving this N = 0 development, we return to the question as to 
why we carried quadratic terms in ( I - / z )  in the expansion of 1//z [see 
Eq. (87)] and in similar expansions of other /x-dependent functions. If 
lower order than quadratic terms are carried in these expansions, the 
resulting equations for ~0, ~bl, and t/r0 do not reduce to the Fokker-  
Planck equations in the Fokker-Planck limit. Carrying terms above 
quadratic in ( I - / z )  leads to unnecessary algebraic complication, since 
these terms are not needed to reproduce the Fokker-Planck limit. Thus an 
independent Fokker-Planck development, as given in the last section, 
was needed as a necessary insight into the general transport equation 
development. 

The next-order result ( N =  I) follows by retaining ~k o, ~,~, ~'2, t/r0, and 
t/r~ terms. In this case, in treating the integration over/2' in Eq. (84), one 
needs to expand Pk(P') abou t / z '=  1 correct to quadratic terms in ( 1 - p ' )  
since the quadratic term gives rise to a ~b2 contribution. That is, we use 

k(k+ 1) 
Pk(/Z')= 1 - -  ( 1 - - / d ) +  

2 
( k -  l)(k)(k + 1 ) (k+2) (1  - / t ' )2  + ... (101) 

16 

Futher, expansions of/~-dependent terms about/z = 1 prior to integration 
over - 1  ~</z ~< 1 are carried in the N =  1 case to terms cubic in (1- /z ) .  
This is necessary to give the correct Fokker-Planck limit. For example, the 
expansion of 1//z about/z = 1 used is 

1 
- =  1 + (1- /~)  + ( 1 - # ) 2  + (1 - /x )  3+ ... 

= - -  _~ 8 2 p  ... 
16 p~ P'(kt)+3Pz(Iz)--5 3('u)+ (102) 

822/80/3-4-10 
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We omit the 
results of the analysis. In terms of a and br, defind as 

33 a = T ( C L o  a : , 1 ) ( r  - -  r  - -  34-(~ - -  c r s 2 ) ( 2 r  - -  6 r  + 3 r  

+ ~(aso-  asa) (2r  12r + 15r 

b~-- �89 - 15o's2 + 4O'~a) r/~o + (3a~2- 2a~a) qrl 

straightforward algebraic details and simply give the 

the seven N =  1 equations are 

(103) 

(104) 

0r ( ~  Orlyo)_fOrlxl Orly]'~ 
Oz = a -  + Oy J \ Ox +'-~-yJ (105) 

0r (~_~L 0qyl'~ (106) 
Oz = a -  + Oy ] 

0r 
Oz = a -- (trso -- a s 1)(r -- r l) (107) 

0r  . 0r 
0r/r'----'2~ = b~ - trs~176 + qr 1) -- 1 0 Z  2-~-r + -~ ' r  J '  r = x , y  (108) 

0r 
Orl'lOz =br-(aslrL~176 Or , r=x,  y (109) 

In the Fokker-Planck limit for which Eq. (95) is valid, we have 

a = a , ( r 1 6 2  +6r  (110) 

br = cr,o(r/ro + r/~l) + Oa(r/, o + 3r/~1) (111) 

and then Eqs. (105)-(109) reduce to 

0 r 1 7 6 1 6 2 1 7 6 1 6 2 1 6 2 1 7 6  - ~ + & / y l ) 0 z  Oy J (112) 

0r 
= 2tr1(2r + 3r (114) 

Oz 

( or or163 Or]rO--trl(r]rO+3~lrl)-- 07. 2 -~-r +--~-r ) '  r=x,  y (115) 

Oqrl 0r 
Oz =trl(2r/r0+3r/rl)-- Or ' r=x,  y (116) 

- o,/ o + + 6 2/- ,113 ,  
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These seven equations are the correct N = 1 Fokker-Planck equations for 
the purely scattering, monoenergetic problem [see Eqs. (69)-(73) with 
a , =  S =  0]. 

Higher-order approximations, with index N >/2, are of course possible. 
As in the Fokker-Planck analysis, one obtains 3 N +  4 equations in Nth 
order, involving the scattering kernel expansion coefficients up to tr,,N+2. 
In this Nth-order analysis, one needs to carry the expansion of Pk(P') 
about p ' =  1 in Eq. (84) to include terms of order (1 _p,)N+~. In the 
expansion of p-dependent terms about p = 1 prior to integration over 
- 1  ~<p~< 1, one carries terms of order (l--p) N+2. We will not pursue 
these higher-order treatments in this paper. Finally, we again note that in 
Nth order the 3N + 4 equations can be reduced to 2N + 3 equations if the 
ask for 0 ~< k ~< N + 2 are independent of x and y. This reduction is accom- 
plished just as in the Fokker-Planck case, per the discussion at the end of 
Section 2. 

4. A N A L Y T I C  R E S U L T S  

In this section, we show that the equations we have developed can be 
solved analytically in the special case of monoenergetic transport in a 
homogeneous medium. Specifically, we consider the Fokker-Planck equa- 
tions for both N = 0 and N =  1 in the no-absorption (a ,  = 0) limit with no 
energy transfer (S = 0) and for a homogeneous medium (a~ constant, inde- 
pendent of position). Since a~ is constant, we can use the reduced set of 
equations involving ~/, rather than r/x, and tly, separately [see Eq. (74) and 
the surrounding discussion]. Thus the N =  0 and N =  1 models consist of 
three and five coupled equations, respectively. By a proper choice of the 
unit of distance, we can set a] = 1 in these equations. 

The N =  0 Fokker-Planck equations, which result from a consolida- 
tion of Eqs. (66)-(68) from four equations to three, together with the 
appropriate boundary conditions [see Eqs. (63) and (64)], are given by 

- ~b o + 31pl - r /o  (117) 
az 

az = Ip~ + 3~//I (118) 

Or/o 
az - r / ~  V2~bl (119) 

~o(X, y, O)=F(x, y) (120) 

~'l(X, y, O) = ~/o(X, y, 0 ) = 0  (121) 
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where F(x, y) is the prescribed boundary data. For any function g(z), we 
introduce the Laplace transform g(s) according to 

f? ~(s) = dz e-SZg(z) (122) 

Laplace transforming Eqs. ( 117)-(119) gives 

S ~ o = ~ o + 3 ~ l - - 0 o + F  (123) 

s~, = ~o + 3~, (124) 

s0o = 0o -- V2~l (125) 

Algebraically eliminating ~1 and ~o from these three equations gives 

--s---~ ~ ~ 1 7 6  (126) 

Before proceeding further with the N--0  analysis, we consider the 
corresponding N =  1 equations in Laplace transform space. The N =  1 
Fokker-Planck equations and boundary conditions in physical space for a 
homogeneous medium with a a = S = 0  and a~ = 1 are given by [see Eqs. 
(63), (64), and (69)-(73)] 

0 • z  ~ = r + 3r + 6r --qo - ql 

0WI , 
~z = ~ ~ 1 6 2 1 6 2  

0r 
O-z'-= 2(2r + 3r 

O~/o 2 1 
Oz = r / ~  01--2 V2r 

z l =  2~/o + 3~1 - -  V 2 0 2  

Co(X, y, O)= F(x, y) 

r y, 0) = r y, 0 ) = 0  

r/o(X, y, 0) = ql(x, y, 0) =0  

(127) 

(128) 

(129) 

(130) 

(131) 

(132) 

(133) 

(134) 
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The corresponding equations in Laplace transform space are 

S~o = ~o + 3~1 + 6~2-rT0-rTt + F  (135) 

s~, = ~o + 3 ~  + 6~2-- tT~ (136) 

s~2 = 2(2~1 + 3~z) (137) 

st7 o = tTo + 3t7, -- V2~, - �89 V2~2 (138) 

stT1 = 2tio + 3t71 - V2~2 (139) 

Algebraically eliminating ~b I, ~k2, rio, and iT, from these equations yields a 
single closed equation for ~0 given by 

Is--  s ( s -  6) 
s ~ Z ~ Z 6 ]  (~o 

= [  (s 2 -  7s +(s 224)(sz - 9 s - 6 ) - 4 s  - 3)(s 2 - +  6s(S-9s - 6)'- 2) (s -  6).] VZ(j ~ + F (140) 

In obtaining Eq. (140) we have neglected terms of order V2"~0 for n >  1, 
which is consistent with neglecting, as we did, e 3 and higher-order terms in 
the asymptotic expansion given by Eq. (24). 

We see that both the N = 0  result, Eq. (126), and the N =  1 result, 
Eq. (140), can be written 

1 
- -  ~o(X, y,  s) = B(s) V2~o(X, y, s) + F(x, y)  (141) 
A(s) 

where, in each case, 

A(s) = l +  O(s_2) ' B(s) = l +  O(s_3) (142) 
S S -  

For any function h(x, y), we define h(k~, ky) as the double Fourier trans- 
form, i.e., 

f~ foo 
"h(kx, ky) = dx dy ei(kxx+k,'Y)h(x, y) 

~ o o  - - o o  

(143) 

The double Fourier transform of Eq. (141) is then 

(144) 
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where kZ= k~ + k~. Thus we have 

A 

Pomraning and Prinja 

(145) 

Neglecting terms of O(k4) ,  which is equivalent to again neglecting fourth- 
order and higher spatial derivatives, we can rewrite Eq. (145) as 

~o = (A - k2A2B) ~" (146) 

We now define Q(z) and P(z) as the Laplace inverses of A(s) and 
AZ(s) B(s), respectively. We have 

Q(z) = ~ - l [ A ( s ) ]  = 1 + O(z) (147) 

z 3 
P(z) = ,L~ -~[AZ(s) B(s) ] = -~ + O(z 4) ( 148 ) 

Where ~ - ~  denotes the inverse Laplace operator. We note that Q(z) is 
just the one-dimensional (no x and y dependences) solution corresponding 
to unit boundary data, F =  1. Laplace inverting Eq. (146) then gives 

~o = (Q-kEp)  F= Q pe-k2~ (149) 

where we have again neglected terms of O(ka), and defined 

r(z) = Q((~)) z3 = ~ + O(z') (150) 

Fourier inverting Eq. (149) gives 

~ko(X, y, z) = Q(z) p(x, y, z) (151) 

where p is the Fourier inverse of Fexp( -kEr ) ,  i.e., 

p(x, y, z) = ~,~ -l[P(k.~, ky) e -k2"(~ ] (152) 

with ~ -  ~ denoting the two-dimensional inverse Fourier transform operator. 
We now show that p(x, y, z) defined by Eq. (152) satisfies the diffusion 

equation 

0_p= 
Oz DVZp (153) 
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with boundary condition 

p(x, y, O) = F(x, y) 

and a diffusion coefficient D given by 

dr(z) z 2 
D(z) = ~ ~ ~ + 0 ( ? )  

(154) 

(155)  

We first note that Eqs. (153) and (154) can be written as 

O0 
w ~  0r V20 (156) 

O(x, y ,O)=F(x ,  y) (157) 

where O(x, y, r )=p(x ,  y, z). Fourier transforming Eq. (157) and Laplace 
and Fourier transforming Eq. (156) gives 

s+k2  (158) 

Laplace inverting Eq. (158) yields 

O = Pe -k2" (159) 

and thus O(x, y, r) is given by the Fourier inverse of the right-hand side 
of Eq. (159), i.e., 

O(x, y, r) =p(x,  y, z) = ~-~[F(k~,  ky) e -k2~(z)] (160) 

Equation (160) agrees with Eq. (152), thus demonstrating that the function 
p(x, y, z) in the solution for ~bo(X, y, z) given by Eq. (151) indeed satisfies 
the diffusion equation and boundary condition given by Eqs. (153) and 
(154). 

Equations (153) and (154) are easily solved in terms of a Green's 
function. We define this Green's function G(x, y, z; x', y') by the diffusion 
equation 

OG 
- - = D  V2G (161) 
az 

with boundary condition 

G(x, y, 0; x ' ,  y ' )  = ~ ( x  - x ' )  ,~(y - y ' )  (162) 
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The solution of the diffusion equation with general boundary data F(x, y) 
is then given by 

p(x, y, z) = dx' dy' G(x, y, z; x', y') F(x', y') (163) 
- - o 0  - - o o  

This Green's function is easily shown to be given by 

G ( x ' Y ' Z ; x " Y ' ) = 4 n ~ ( z ) e X p [  (x-x')Z+(Y-Y')Z]4r(z) (164) 

where 

r(z) = dz' D(z') (165) 

An algebraically simple case is that corresponding to radially sym- 
metric boundary data given by a Gaussian. That is, if 

F(x, y) = - -  e -'-/~ (166) 
7tV 

where r 2 = x 2 + y2 and v is a constant related to the width of the Gaussian, 
then Eq. (163) yields 

1 
p(x, y, z) - m e  -~/(4~+~ (167) 

n:(4z + v) 

Equation (167) expresses the well-known fact that the convolution of two 
Gaussians is also a Gaussian, with the variance given by the sum of the 
two input variances. We will use Gaussian boundary data in our numerical 
results to be given shortly. 

We now apply these general considerations to our N =  0 and N =  1 
Fokker-Planck models. Considering first N = 0 ,  we have [see Eqs. (126) 
and (141)] 

( s - 3 )  1 
A(s) = s(s - 4-""-~' B(s) - (s - 1 )(s - 3) (168) 

A(s) is easily inverted to give 

Q(z) = .Lp-1A(s) = �88 + e 4z) (169) 
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This has the small-z expansion 

Q(z)-- l+z+2z2+~z 3 +0(2. 4) (170) 

We recall that Q(z) is just the one-dimensional solution with boundary 
data F =  1, and this problem has been considered in detail by B6rgers and 
Larsen (7) and Prinja and Pomraning. ('5) The first three terms on the right- 
hand side of Eq. (170) agree with these one-dimensional results, but our 
cubic term is incorrect. It should be 20z3/3. (7''5) Thus our N = 0  model 
predicts the correct one-dimensional solution up to and including quad- 
ratic terms in the small-z expansion. From Eq. (168) we have 

( s - 3 )  (171) 
A2(s) B(s) - s2(s _ 1)(s - 4) 2 

Rather than inverting this exactly, we content ourselves with a small-z 
expansion. We have 

1 6 
A2(s) B ( s ) = ~ + ~ +  O(s -6) (172) 

which inverts to 

~,3 2"4 
e(z)  = Le - ' (A2B)= 6 + ~ - +  O(z 5) (173) 

Thus 

r(z) t'(z) z 3 ~4 
- - -  - +~-~+ O(z 5) (174) 

a(z) 6 

and 

D(z) dr(z) z 2 z 3 
dz 2 ["'3--[" 0(2"4) (175) 

At this point, we can easily make contact with Larsen's work. r If 
we approximate Q(z) and D(z) by the leading-order terms in the small-z 
expansions [see Eqs. (170) and (175)], i.e., if we use 

Q(z) = 1, D(z) =z2/2 (176) 

we reproduce Larsen's lowest-order result, originally given by Fermi (8'9) 
[see Eq. (14) with tr I = 1]. If we use D(z) as given by Eq. (176), but retain 
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the linear term in the small-z expansion of Q(z) as given by Eq. (170), i.e., 
if we use 

Q(z) = I +z, D(z)=z2/2 (177) 

our N = 0 analysis gives Larsen's  next-order result [ see Eqs. (17) and (18) 
with o" 1 = 1]. Larsen's  highest-order result, reproduced here as Eqs. (19) 
and (20), corresponds in our  nota t ion to (with a~ = 1) 

z 2 5 3 
Q(z) = l + z +  2z 2, D ( z ) = - ~ + ~ z  (178) 

We see that  our  N = 0 t reatment  reproduces the quadrat ic  Larsen terms in 
the one-dimensional solution Q(z) [ compare  Eqs. (170) and (178)],  but 
gives a different cubic term in the diffusion coefficient D(z) [ compa re  Eqs. 
(175) and (178)]. Larsen's  cubic term is correct, and we will find this term 
in our N = 1 approximat ion ,  which we now consider. 

For  N =  1 we have [see Eqs. (140) and (141)] 

A(s) ( s 2 - 9 s - 6 )  
= s2(s - 10) (179) 

( s 2 - 7 s + 2 4 ) ( s 2 - 9 s - 6 )  + 6 s ( s - 2 ) ( s - 6 )  
B ( s ) -  ( s 2 _ 4 s _ 3 ) ( s 2 _ 9 s _ 6 )  2 (180) 

A(s) is easily inverted to give 

Q(z) = .~-1A(s) = �89 + 15z + e l~ (181) 

This has the small-z expansion 

Q(z) = 1 + z + 2z 2 + -~z 3 + ~ z  4 --]- O(z 5) (182) 

This one-dimensional  result for N =  1 correctly gives the cubic term 
(20z3/3) which the N =  0 result did not, but  the z 4 coefficient is incorrect 
(it should be 95/3). (7, is) As shown elsewhere in the one-dimensional  con- 
text, (is) one would obtain the correct z 4 coefficient if our  analysis is carried 
to next order ( N =  2). 

F rom Eqs. (179) and (180) we have 

A2(s) B(s) - ( s 2 - 7 s + 2 4 ) ( s 2 - 9 s - 6 ) + 6 s ( s - 2 ) ( s - 6 )  (183) 
s4(s - 10) 2 (s 2 - 4s - 3) 
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For large s, Eq. (183) yields 

1 14 
A2(s) B(s) = sT + s--- ~ + O(s-6) (184) 

and this inverts to 

z 3 7 
P(z) = ~e-~(A2B) = - ( + ~  z' + 0(:) (185) 

We then find 

r ( z ) = P ( z )  z 3 5 Q ( z ) = - ~ w - ~ z 4 w O ( z  5) (186) 

and 

2 .2 

 +olz,I (187) 

Thus we see that our N =  I approximation reproduces the highest-order 
result of Larsen ~2) if terms up to quadratic in the small-z expansion of 
Q(z), and terms up to cubic in the small-z expansion of D(z), are retained 
in our expansions [compare Eqs. (182) and (187) with Eqs. (19) and (20) 
with o~ = 1 ]. 

The same solution techniques we used here for the Fokker-Planck 
equations can, with equal case, be applied to the full transport equation 
N = 0 and N = 1 models developed in Section 3, but we do not consider the 
details here. However, there is one final item we do consider in concluding 
this paper. This is comparison of numerical results predicted by our N = 0 
and N = 1 models with benchmark Monte Carlo results. This is considered 
in the next section. 

5. NUMERICAL  RESULTS 

The class of problems we consider numerically is the same class we 
have already considered analytically, namely monoenergetic transport in a 
purely scattering, homogeneous medium. We take the scattering kernel to 
be exponential in form and given by 

o ' e  - ( 1 - ~ ) /2  

as(~) = 2rr2( 1 -- e-2/~) (188) 
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where ~ = ~ ' .  f t  is the cosine of the scattering angle. The numerical values 
of the parameters 2 and a in Eq. (188) which we shall use are 2 = 0.001 and 
a = 100. With this value of 2, the scattering is very peaked in the forward 
direction, and Fokker-Planck description of scattering is valid/s) Using 
these data, we compute the Fokker-Planck parameter a~ from Eq. (96) as, 
neglecting terms of O(e-2/x), 

al = a 2  =0.1 (189) 

and since the problems under consideration are purely scattering, tr~ is just 
the transport cross section. 

We take the slab to have a thickness T =  1, and accordingly a I T =  0.1 
and aT= 100. Thus this slab has a thickness of 100 as measured in particle 
mean free paths, and a thickness of 0.1 as measured in transport mean free 
paths. It  is tr] T which must be small for the beam to remain peaked about 
/2 = 1.  (9) Finally, we assume that the input beam at z = 0 is Gaussian in 
form and given by, with r2=  x 2 +  y2, 

1 2 
F(x, y) = - -  e - r /v  (190) 

/Z/) 

Here v is a specified parameter which is just twice the variance of this 
normal distribution. For any value of v, F(x, y) is normalized to a unit 
area, i.e., 

I I , dx dyF(x,y)= d r r - - e - ; / V = l  (191) 
- o o  - o o  ~ 1 )  

The numerical results we consider are for ~bo(r, T), the angularly integrated 
intensity at z = T =  1, the exiting surface of the slab, as a function of the 
radial coordinate r. We use two different values of the parameter v in the 
input Gaussian given by Eq. (190), namely v = 0.2 and v = 0. We compare 
Monte Carlo benchmark results (kindly supplied to us by C. B6rgers) with 
the predictions of the Fermi model and our N =  0 and N =  1 Fokker -  
Planck models. The Monte Carlo results involved 1 0  7 histories, and the 
statistical errors in ~k0(r, T) are estimated to vary roughly monotonically 
from about 0.1% for small r (0~<r~<0.4) to about 3% for large r 
(1.2~<r~< 1.6). 

Figures 1-3 give results corresponding to v = 0.2 in the input Gaussian 
given by Eq. (190). Figure 1 gives Monte Carlo benchmark results for 
r T), as well as the predictions of the three models. The Monte Carlo 
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results were computed with 20 radial tallying bins of  Ar = 0.08 each. These 
20 average (over the bin) values of  ~k0(r, T) were plotted at the midpoint 
of  each bin, and these 20 points were connected with straight lines. 
A horizontal line was drawn between r = 0 and r = 0.04 to indicate the zero 
slope at r = 0. The crosses, circles, and squares indicate the model results, 
again averaged over the Monte Carlo bins and plotted at the bin centers. 
We see that all three models perform quite well for this problem. For small 
r, for which ~o(r, T) is substantial, the Fermi model is an underestimate of 
the true result, the N = 0 model overestimates the true result, and the N =  1 
model, which appears to be exceedingly accurate, is roughly halfway 
between these two less accurate results. We have also indicated the 
input Gaussian, given by Eq. (190) with v=0 .2 ,  as the dashed line in this 
figure. It is clear that the transverse spreading in this problem is quite 
small, and this accounts for the good performance of our N = 0 and N = 1 
models. Our analysis was based upon the presumption of small transverse 
spreading. 

To visually separate the predictions of the three models, Fig. 2 shows 
the error E in each model, defined as 

E = ~ko(model) - ~o(Monte Carlo) (192) 
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as a function of the radial coordinate r. Here we see the very small error, 
for each radial point, for the N = 1 model. However, the percentage error 
P, defined as 

p [ ~bo(model)- ~Po(Monte Carlo)] 
= L J • lOO (193) 

is substantial for large r even in the N = 1 model, as can be seen in Fig. 3. 
Large r is associated with large angular deflections of the beam, and such 
deflections are treated poorly by all three models because of the presump- 
tion in their derivations of peakedness about/~ = 1. Specifically, we see that 
all three models underestimate the true result for large r. 

As was pointed out above, these v = 0.2 results are very accurate 
because the transverse spreading of the beam is quite small in this case. 
A severe test of these models would be to set v = 0, which corresponds to 
a true pencil beam of particles incident upon the slab. In this case, the 
transverse spreading of the beam will be large. Figures 4--6 give results for 
this case, and are analogous to Figs. 1-3, respectively. In this case, the 
Monte Carlo calculations used 20 tallying bins of equal width given by 
Ar = .#/'0-]-/5 = 0.0632... All three figures indicate the robustness of the three 
models; all models are qualitatively correct even with large transverse beam 
spreading. It is worth noting that the Fermi model does not assume small 
transverse spreading, (9' ]o) in contrast to our N =  0 and N =  1 models. 

It can be seen from the figures that for small r, the Fermi solution is 
most accurate, whereas for large r, the N =  1 model performs best. The 
error in the N = 1 model changes sign twice as a function of r, whereas the 
Fermi model consistently underestimates the true result. The radially 
integrated error, which is just the error in the one-dimensional beam 
problem [corresponding to F(x, y ) = l ,  rather than using Eq. (190)] is 
clearly the smallest for N =  1 model, as discussed in the last section. This 
one-dimensional (radially integrated) error is about 12% for the Fermi 
model, and less than 1% for our N = 0 and N = 1 models. To summarize 
these v = 0 results, the Fermi model, which underestimates the true solution 
for all r, is most accurate on a point-by-point basis for small and moderate 
values of r where the magnitude of the intensity is substantial. In contrast, 
the N =  0 and N =  1 model results oscillate about the true solution, pro- 
ducing quite large errors for small and moderate r, but the average 
(integrated over r) error is very small. Thus, except for large r, the Fermi 
model gives a better radial spatial distribution of the particle collision rate, 
but the N = 0  and N =  1 models predict a much more accurate overall 
(integrated over r) collision rate. 
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The final item we take up in this section is to once again make contact 
with the earlier results of Larsen.(12) As discussed in the introduction to this 
paper, Larsen's lowest-order result is just Fermi's model. In next order, 
Larsen's result, given here by Eqs. (17) and (18), is comparable in numer- 
ical predictions to our N =  0 model, but somewhat less accurate (about 2 % 
less accurate for the radially integrated result). Larsen's highest-order 
result, given here by Eqs. (19) and (20), is comparable to our N =  1 result, 
but again slightly less accurate (a fraction of a percent less accurate for the 
radially integrated result). The numerical accuracy values just given are 
based upon the two problems summarized in this section, but the relative 
accuracy statements apply qualitatively more generally. 

In summary, the models of beam transport we have considered in this 
paper are strictly applicable to problems involving nearly collimated beams 
with small transverse spreading. For such problems, the models are very 
accurate. For problems involving large transverse spreading, our models 
are less accurate, but nonetheless are robust and lead to quite reasonable 
results. They are particularly accurate for the transverse integrated inten- 
sity. It should be emphasized that the analysis in this paper is very general 
in that it allows energy transfer and arbitrary spatial dependences in all 
cross sections in the underlying transport description. Further, the analysis 
was carried out for the general linear transport equation as well as its 
Fokker-Planck approximation, applicable to problems involving highly 

822/80/3-4-11 
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forward peaked and small-energy-transfer scattering. The weakest 
ingredient in our  analysis is the assumption of small transverse spreading 
of the beam, and any improved model will probably require relaxation of 
this assumption. 
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